

Influence of a mobilization of the mesentery on the hepatic portal vein capacity measured with Echo-Doppler

P.L.S. van Dun¹, E. Dobbelaere, P. Dillies, F. Inghelbrecht, P. Van Eeghem², L. Steyaert³, E. Danse⁴, Y. Rosseel⁵

¹CORPP (Commission for Osteopathic Research, Practice and Promotion, vzw) ²Departement of gastro-enterology, University Hospital Groeninge, Kortrijk (Belgium) ³Departement of Radiology, University Hospital, Sint-Jan, Bruges (Belgium) ⁴Departement of Radiology, University Hospital, Saint-Luc, Brussels (Belgium) ⁵Data-analysis-group, Faculty of Psychology and Pedagogy Sciences, University of Ghent (Belgium)

Questions asked

Overall question Can an osteopath influence the physiology of an organ by applying a manual technique on this organ ?

Questions asked

Overall question Can an osteopath influence the physiology of an organ by applying a manual technique on this organ ? General research What could be the possible physiological question changes after mobilization of the mesentery ?

Questions asked

General research What could be the possible physiological question changes after mobilization of the mesentery ?

Specific researchIs there a measurable change of the portalquestioncapacity after mobilization of the mesentery ?

Study Design

- > Multicentric
- Subject and evaluator blinded
- Randomized
- > Observational
- > Experimental

Experimental Design

- T1 > Doppler measurement before intervention
- MT/NST > Intervention

T2

T3

- Doppler measurement after intervention
 - Doppler measurement 60 minutes after intervention

Every Doppler measurement is the mean of 3 consecutive measurements (Lafortune et al., 1998)

Mobilization Technique (MT)

- > 15 Subjects
- > Position: left side
- Mobilization of the mesentery
- Painless
- > Duration: 3 minutes

Non-Specific Technique (NST)

- > 15 Subjects
- Position: left side
- Stretching of the iliopsoas muscle
- > Painless
- > Duration: 3 minutes

Exclusion Criteria

- > Women
- Medication
- ▷ BMI > 27
- > Alcohol > 60 gr/day
- Smoking
- Inflammatory pathologies
- > Hepatic and/or cardiac diseases

Inclusion Criteria

- > 30 Men
- ≻ BMI 20 27
- ≻ Age 20 45 years
- Light dinner the night before and no food or fluid intake after midnight

Blinding and Randomization

- The 2 operators: 2 experienced radiologists of two different university hospitals
- Distribution NST-group and MT-group at random
- Distribution hidden to radiologists and subjects

Choice of Echo-Doppler

- > Non invasive
- > Relatively low cost
- Easy repetition of measurement
- > Visualisation in colour
- > Acoustic Information

Echo-Doppler, type ATL (Philips), HDI 5000, Bothell, USA, frequency of the medical transducer: 2.5 MHz

Primary Outcome

Q = V . A . 60

Q = Capacity of the portal vein (ml/min)

V = Mean blood flow velocity (cm/sec)

A = Area of the portal veins cross section (cm²); $(D/2)^2$ with D = diameter

Limitations of the flow measurement by Echo-Doppler

- > Angle of measurement
- Cross section of the vessel

Flow Standard Error

- Ideal angle to measure flow velocity = 55° (Sabba et al., 1990)
- No valid flow velocity can be made at angles > 70° (Dauzat et al., 1984; Gill, 1985)
- This study: mean angle was 58° (min: 48°, max: 70°)

Adapted Research Question

Is there a difference between the NST-group and the MT-group, regarding the three moments of measurement ?

Influence of Radiologist?

R/T	T1	Т2	Т3
R1 n (14)	755.71 (176.57)	878.05 (227.07)	751.51 (246.40)
R2 n (16)	764.38 (359.53)	1079.04 (374.24)	1039.87 (281.43)
	p = .752	p = .980	p = .023

Table 2: The mean portal vein capacity in ml/min (standard deviation) for the two radiologists for measurements at T1, 2 and 3

Influence of Radiologist?

- R1 had 9 subjects in the MT-group while R2 had only 6
- After statistical correction for condition (MT and NST) there was no significant difference found between R1 and R2

Results

Group/T	T1	T2	Т3
NST	755.71	878.05	751.51
	(176.57)	(227.07)	(246.40)
MT	764.38	1079.04	1039.87
	(359.53)	(374.24)	(281.43)
	p = 0.934	p = 0.86	p = 0.006

Table 1: The mean portal vein capacity in ml/min (standard deviation)for the NST and MT group for measurements at T1, 2 and 3

Results

Conclusion

A multivariate analysis shows a statistical difference between the NST-group and the MT-group when the results of T1 are compared with those of T2 and T3

F(1,28) = 4.726, p = 0.038

Contribution to capacity

T (Group)	n	Flow velocity (cm/s)	Diameter (cm)	Capacity (ml/min)
T1 (MT & NST)	30	11.25	1.21	760
T2 (MT)	15	12.12	1.38	1079
T3 (MT)	15	10.75	1.42	1040

Table 3: Mean values of flow velocity, diameter and capacity for measurements at T1, 2 and 3

Contribution to capacity

т	Flow velocity (cm/s)	Diameter (cm)
T1	0.81	0.88
T2	0.89	0.61
Т3	0.66	0.64
Table 4: St	andardized r	egression coe

group at T1, 2 and 3

Conclusion

- This study supports the hypothesis that manipulation of visceral organs in the abdominal cavity has a physiological effect.
- Further studies will be needed to confirm the outcome of this study, and more knowledge is needed regarding the specific mechanisms that are involved with visceral manipulation.

Thank you for your kind attention!

